Courses

PhD

  • Advanced Computational Algebraic Geometry

Reference : 
D. Cox, J. Little , and D. O'Shea, Using Algebraic Geometry, Springer-Verlag, New York, 2005.
D. Cox, J. Little , and D. O'Shea, Ideals, Varieties, and Algorithms, Springer-Verlag, New York, 2006.
T. Becker and V. Weispfenning, Grobner Bases. A Computational Approach to Commutative Algebra, Graduate texts in Mathematics 149, 574 pp., Springer Verlag 1993.
R. Froberg , An introduction to Grobner bases, John Wiley & Sons, 1997.
M. Kreuzer and L. Robbiano, Computational commutative algebra I, Springer-Verlag, Berlin, 2000.
B. Sturmfels, Algorithms in invariant theory, Series Texts & Monographs in Symbolic Computation, Springer, 1993. 

  • Computational Algebraic Geometry

References:
T. Becker and V. Weispfenning, Grobner Bases. A Computational Approach to Commutative Algebra, Graduate texts in Mathematics 149, 574 pp., Springer Verlag 1993.
D. Cox, J. Little , and D. O'Shea, Using Algebraic Geometry, Springer-Verlag, New York, 1998.
D. Cox, J. Little , and D. O'Shea, Ideals, Varieties, and Algorithms, Springer-Verlag, New York, 1991.

  • Lie Algebra

Reference :
R. Carter, Lie algebras of finite and affine type, Cambridge University Press, Cambridge, 2005. 
J. E. Humphreys, Introduction to Lie algebras and representation theory, Springer-Verlag, New York-Berlin, 1972. 

  • Commutative Algebra

Reference :
R. Y. Sharp, Steps in commutative algebra, Cambridge University Press, Cambridge, 2000.
M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont. 1969.

MSc

  • Real Analysis

Reference:
H. L. Royden, Real Analysis, Macmillan, 1988.

  • Advanced Algebra

Reference:
T. W. Hungerford, Algebra, Springer-Verlag, New York-Berlin, 1980. 

  • Dynamical Systems I

Reference:

J. Palis and W. Demelo, Geometric Theory of Dynamical Systems, Springer Verlag, New York Inc, 1982. 

  • Dynamical Systems II

Reference:

R. C. Robinson , Dynamical Systems Stability, Symbolic Dynamics and Chaos, Studies in Advanced Mathematics. CRC Press, Boca Raton, Fla., 1995. 

  • Geometry of Manifolds

Reference:
W. M. Boothby, An Introduction to Differentiable Manifolds and Riemannian Geometry, Academic Press, Inc., Orlando, FL, 1986. 

  • Rings and Graphs

Reference:
J. M. Harris, J. L Hirst and M. J. Mossinghoff, Combinatorics and graph theory, Springer-Verlag, New York, 2000.